Milburn, G. H. W., Truter, M. R. \& Vickery, B. L. Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). (1968). Chem. Commun. p. 1188.

Pearson, R. G. (1963). J. Amer. Chem. Soc. 85, 3533.
Pearson, R. G. (1966). Science, 151, 172.
Schlemper, O. (1967). Inorg. Chem. 6, 2012.
Scott, D. W. (1970). J. Chem. Thermodyn. 2, 833.
Schaefer, W. P. \& Marsh, R. E. (1969). Acta Cryst. B25, 1675. J. Chem. Phys. 42, 3175.

Studd, B. F. \& Swallow, A. G. (1968). J. Chem. Soc. (A), p. 1961.

Watenpaugh, K. \& Caughlan, C. N. (1966). Inorg. Chem. 5, 1782.
Watenpaugh, K. \& Caughlan, C. N. (1967). Inorg. Chem. 6, 963.

The High Pressure Synthesis, Crystal Structure, and Properties of CrP_{4} and MoP_{4}

By W. Jeitschko and P.C.Donohue
Central Research Department,* E.I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898, U.S.A.

(Received 30 August 1971)

Abstract

The new compounds CrP_{4} and MoP_{4} have been prepared by reaction of the elements at pressures of 15 to 65 kbar in a tetrahedral anvil high-pressure device. They have isotypic monoclinic crystal structures, space group $C 2 / c$, and four formula units per unit cell. The cell dimensions are, for $\mathrm{CrP}_{4}: a=$ $5 \cdot 1914$ (5), $b=10.7600$ (8), $c=5.7712$ (6) $\AA, \beta=110.648$ (6) ${ }^{\circ}$, and for $\mathrm{MoP}_{4}: a=5.313$ (2), $b=11 \cdot 139$ (7), $c=5.820$ (2) $\AA, \beta=110.64$ (4) ${ }^{\circ}$. The structure of CrP_{4} was determined from three-dimensional singlecrystal counter data, and refined by a full-matrix least-squares method with isotropic thermal parameters, yielding a conventional R value of 0.034 for 1017 observed reflections. Two nonequivalent P atoms are tetrahedrally coordinated, one by three P atoms and one Cr atom, the other by two P atoms and two Cr atoms. All $\mathrm{P}-\mathrm{P}$ distances are within $2.21 \pm 0.02 \AA$. The Cr atom is coordinated by six P atoms, forming a distorted octahedron. $\mathrm{Cr}-\mathrm{P}$ distances vary between 2.32 and $2.39 \AA$. The [CrP_{6}] octahedra share edges, forming zigzag chains along the c direction. Temperature-dependent resistivity measurements of CrP_{4} and MoP_{4} samples indicate metallic conductivity. CrP_{4} is Pauli paramagnetic. The structure and bonding of CrP_{4} are dicussed and compared with those of other phosphorus-rich compounds.

Introduction

The binary systems chromium-phosphorus and molyb-denum-phosphorus have been investigated repeatedly in the past (Årstad \& Nowotny, 1937; Nowotny \& Henglein, 1938; Vogel \& Kasten, 1939; Faller, Biltz, Meisel \& Zumbusch, 1941; Schönberg, 1954; Bachmayer, Nowotny \& Kohl, 1955; Lundström, 1962; Rundqvist, 1962a, b; Rundqvist \& Lundström, 1963; Rundqvist, 1965; Sellberg \& Rundqvist, 1965; Baurecht, Boller \& Nowotny, 1971). Reviews have been given by Rundqvist (1962c) and Lundström (1969). There was agreement that the compounds CrP_{2} and MoP_{2} were the compounds richest in phosphorus found so far in the respective systems. The present study was undertaken to explore the influence of high pressure on the formation of phosphorus-rich compounds in these systems. The compounds CrP_{4} and MoP_{4} were prepared for the first time, and their crystal structure and physical properties are reported.

It Sample preparation

The samples were prepared in a tetrahedral anvil press of National Bureau of Standards design (Lloyd, Hut-

[^0]ton \& Johnson, 1959), using a cylindrical boron nitride crucible of 0.6 cm length and $0.13 \mathrm{~cm}^{-3}$ volume, surrounded by a graphite sleeve resistance heater inserted in a pyrophyllite tetrahedron. The temperature was measured with a $\mathrm{Pt}, \mathrm{Pt}-\mathrm{Rh}$ thermocouple uncorrected for pressure effects and placed at the center of the cylinder surface. Detailed operating procedures have been described by Bither, Gillson \& Young (1966).

High-purity Mo, Cr, and red P powders were ground together in the metal:phosphorus ratio 1:4, and pressed into a pellet, which was placed in the boron nitride crucible. Pressure was applied and then the temperature was raised. Optimum conditions are from $15-65 \mathrm{kbar}$ and $900-1200^{\circ} \mathrm{C}$. These conditions were generally held for two hours; the samples were cooled over a period of about two hours to $700-1000^{\circ} \mathrm{C}$ and then quenched.

To investigate the stability of CrP_{4} at lower pressures, CrP_{4} was also prepared by reaction of a $1: 4$ mixture of Cr and P sealed in a Pyrex tube (10 mm outside diameter, 6 mm inside diameter) held in a Pt jacket and heated to $700^{\circ} \mathrm{C}$ under 200 atm ; the temperature and pressure were then raised to $1000^{\circ} \mathrm{C}$ and 3 kbar . Under these conditions, the Pyrex tube is soft, so that the external pressure equals the internal pressure. The reaction product was identified, through its X-ray
pattern, as being identical to the CrP_{4} phase prepared at 65 kbar.

Characterization of $\mathbf{C r P}_{4}$

CrP_{4} obtained in the 65 kbar experiments had the form of large, black, shiny, brittle crystals with glass-like fracture surfaces. Chemical analysis gave the following results: $30.7 \% \mathrm{Cr}, 72.7 \% \mathrm{P}$; calculated values for $\mathrm{CrP}_{4}: 29.5 \% \mathrm{Cr}, 70.5 \% \mathrm{P}$. Electrical measurements were made on a single crystal of unknown orientation with the four-probe technique. CrP_{4} is a good metallic conductor: $\varrho_{298{ }^{\circ} \mathrm{K}}=2.3 \times 10^{-4}$ ohm.cm, $\varrho_{4 \cdot 2}{ }^{\circ} \mathrm{K}=2.6 \times$ 10^{-6} ohm.cm. Magnetic measurements between $4 \cdot 2$ and $300^{\circ} \mathrm{K}$ show weak, and slightly field- and temper-ature-dependent paramagnetic behavior, indicating diamagnetism with superimposed Pauli paramagnetism.

Unit cell and space group

Single crystals of the crushed material were investigated with a Buerger precession camera. The diffraction patterns could be indexed with a monoclinic unit cell. The conditions for observed reflections are $h k l$ with $h+k=2 n$ and $h 0 l$ with $l=2 n$. They lead to space groups $C 2 / c$ or $C c$, of which $C 2 / c$ was found to be correct through the structure determination. A Guinier-Hägg powder pattern (Table 1) of CrP_{4} was indexed on the monoclinic cell, and the lattice constants were refined by a least-squares procedure, using high-purity KCl ($a=6 \cdot 29310 \AA$) as an internal standard. Lattice constants are given in Table 2. The measured density was $3.88 \mathrm{~g} . \mathrm{cm}^{-3}$; the X-ray density was $3.873 \mathrm{~g} . \mathrm{cm}^{-3}$, assuming four formula units.

Structure determination of $\mathbf{C r P}_{4}$

The single crystal used for the measurement of the diffraction intensities approximated the shape of a needle, with an irregular cross-section and dimensions $50 \times 30 \times 250 \mu$. It was mounted with the needle-axis - which turned out to be close to the [110] direction parallel to the φ axis of an automated Picker diffractometer. Zr-filtered Mo radiation was used with scintillation counter and pulse-height discriminator. The $\theta-2 \theta$ scan technique was used; the scan angle was $1.8^{\circ} 2 \theta$ and the scan speed $1^{\circ} 2 \theta \mathrm{~min}^{-1}$. Background counts of 15 sec were taken at the beginning and end of each scan. The intensity of a standard reflection was taken every three hours. It remained constant, within $\pm 2 \%$, during the period of the data collection. All reflections within the asymmetric quadrant up to $(\sin \theta) / \lambda=0.98$ were measured. The usual Lorentzpolarization correction was applied. No absorption
correction was made, since approximate transmission values calculated for the crystal shape varied only between 79 and 88%, which amounts to relative errors of less than $\pm 2.5 \%$ in structure factors.

A three-dimensional Patterson synthesis was computed with a program written by Fritchie \& Guggenberger (1967), and the structure was found through the interpretation of this Patterson function. The structure was refined on a Univac 1108 computer, using a full-

Table 1. Evaluation of a Guinier-Hägg pattern of CrP_{4} and of a Debye-Scherrer pattern of MoP_{4}
Both patterns were taken with $\mathrm{Cu} K \alpha$ radiation.

CrP_{4}					MoP_{4}				
hk 2	${ }_{\text {d }}$	${ }_{0}$	I_{c}	I_{0}	hk \downarrow	${ }^{\text {d }}$ c	${ }_{0}$	I_{c}	I_{0}
020	5.3800		1	-	020	5.5593	5.575	5	
110	4.4275	4.4250	44	v8	110	4.5405	4.543	91	vvs
11-1	4.1375	-	?	-	11-1	4.2189	4.222	7	w
021	3.8114		1	-	021	3.8940	3.898	14	
111	2.9855	2.9844	5	VW	111	3.0395	3.038	9	
130	2.8854	2.8843	6	VW	130	2.9750	2.975	9	m
13-1	2.8004	2.8003	100	vvs	13-1	2.8788	2.880	100	s
11-2	2.7278		0	-	040	2.7845	-	0	
002	2.7002	2.7000	58	vvs	11-2	2.7500	2.751	5	vw
040	2.5900	-	0	-	002	2.7234	2.725	60	vs
200	2.4289	2.4286	10	W	200	2.4862	2.489	1	vwh
022	2.4133	-	1	-	041	2.4794	,	1	-
041	2.4078	2.4078	4	vvw	022	2.4 .455	2.447	5	vir
131	2.3487	-	2	-	131	2.4051	2.407	10	\%
22-1	2.3277	2.3275	18	m	22-1	2.3859	2.388	21	s
20-2	2.2410	-	0	-	20-2	2.2793	-	2	
13-2	2.2168 \}	2.2147	10		220	$2.2702\}$		21)	
220	2.2138 J	2.2147	18	s	13-2	2.2502	2.267	$10\}$	s
22-2	2.0587	2.0588	11	w	22-2	2.1094	2.1097	13	m
112	2.0331	2.0330	25	s	112	2.0511	2.0513	28	s
150	1.9575	-	1	-	150	2.0330	2.0325	2	vvis
15-1	1.9400	1.9405	5	vw	15-1	2.0015	2.0031	10	V
$0 \cdot 2$	1.9057	-	0	-	042	1.9470	-	0	
11-3	1.8934		0	-	24-1	1.9160	1.9155	34	S
24-1	1.8527	1.8527	35	s	11-3	1.9112	-	0	-
221	1.8502	1.8502	12	m	221	1.8905	1.8898	12	w
240	1.8028		0	-	060	1.8554	1.8578	14	m
050	1.7933	1.7933	17	m	240	1.8545	-	0	-
132	1.7931		0	-	132	1.8251	-	0	-
151	1.7592	1.7593	6	vw	151	1.8205	1.8215	9	v
$24-2$	1.7218		0	-	24-2	1.7638	-	0	-
15-2	1.7107	-	0	-	051	1.7572	1.7585	15	m
023	1.7071\}	7061	2\}		15-2	1.7549		1	-
31-1	1.7059		3.	vw	$31-1$	1.7459	-	3	
061	1.7019	1.7022	18	m	023	1.7252		4	-
13-3	1.6950	1.5951	$4 ; 7$	vs	13-3	1.7194	1.7205	35	s
22-3	1.5871	-	2	-	22-j	1.7120		3	-
31-2	1.6533	1.5534	21	s	31-2	1.5885	1.5882	19	m
310	1.6013	1.5015	9	W	310	1.5394	1.5395	11	w
241	1.5896	1.5897	31	s	241	1.6297	1.5315	25	s
33-1	1.5565	1.5571	2	vvir	33-1	1.5958	-	0	
202	1.5538	1.5535	2	vvw	202	1.5797	-	0	
33-2	1.5153	-	0	-	33-2	1.5519	-	0	-
113	1.5071	1.5070	2	vow	052	1.5339	1.5335	10	V
043	1.4951	-	1	-	152	1.5270		1	
052	1.49393		$12\}$		113	1.5251	-	2	
222	1.4928)	1.4937	6	3	043	1.5209	-	3	
152	1.4920	-	1	-	222	1.5197	1.5191	6	ver
$24-3$	1.4825	1.4830	4	Vw	26-1	1.5185	1.5د1	0	-
31-3	1.4798	1.4799	3	vvw	170	1.5155	-	3	
330	1.4758	-	0	-	330	1.5135	-	0	-
6-1	1.4729	-	0	-	24-3	1.5111		5	
170	1.4555	1.4557	1	vww	31-3	1.5055	-	2	
1-1	1.4540	-	0	-	17-1	1.5023		0	
50	1.4427	1.4429	3	vv*	260	1.4875	-	0	-
15-3	1.4341	-	1	-	15-3	1.4630	1.4535	3	vvw
1.4	1.4255	-	0	-	26-2	1.4394	-	1	-
20-4	1.4099	1.4099	5	vw	11-4	1.4379	-	1	-
311	1.4073	-	1	-	311	1.4376	-	1	-
133	1.40121	1.4015	3	vvw	20-4	1.4244	1.4243	5	vvw

Table 2. Unit-cell dimensions of CrP_{4} and MoP_{4}

		(\AA)	(\AA)	$c(\AA)$	$\beta\left({ }^{\circ}\right)$
CrP_{4}	$5 \cdot 1914(5)$	$10 \cdot 7600(8)$	$5 \cdot 7712(6)$	$110 \cdot 648(6)$	$3\left(\AA^{3}\right)$
MoP_{4}	$5 \cdot 313(2)$	$11 \cdot 139(7)$	$5 \cdot 820(2)$	$110 \cdot 64(4)$	$322 \cdot 4(4)$

matrix least-squares program written by Finger (1969). Atomic scattering factors for neutral atoms were taken from Doyle \& Turner (1968); these were not corrected for anomalous dispersion. The function minimized was $\sum w_{i}\left(K F_{o}-F_{c}\right)^{2}$, where w_{i} is the weight based on counting statistics and K a scale factor. Reflections

Fig. 1. Densities in the binary systems $\mathrm{Cr}-\mathrm{P}^{\text {Pand }}$ Mo-P.
where F_{o} was less than three standard deviations were given zero weight and are marked with an asterisk in the list of observed and calculated structure factors (Table 3). To account for secondary extinction, the relation $I_{\text {corr }}=I_{\text {uncorr }} /\left(1-C I_{\text {uncorr }}\right)$ given by Zachariasen (1963) was used, where C was refined as a leastsquares parameter to $0.49(5) \times 10^{-5}$. The structure was refined with isotropic thermal parameters resulting in a conventional R value of 0.041 for a total of 1210 reflections and $R=0.034$ for 1017 observed reflections. Final parameters are listed in Table 4.

Isotypic MoP_{4}^{7}

Samples of MoP_{4} were prepared under the same conditions as those described for CrP_{4}. The reaction product had a microcrystalline metallic appearance. A DebyeScherrer pattern of the crushed sample, taken with Nifiltered Cu radiation, was very similar to the powder pattern of CrP_{4} and could readily be indexed with a similar unit cell. Only eight very faint lines remained unindexed, proving that the product was essentially single phase. A least-squares refinement of these data gave the cell dimensions listed in Table 2. The X-ray density is $4.53 \mathrm{~g} . \mathrm{cm}^{-3}$. An intensity calculation (Yvon,

Table 3. Observed and calculated structure factors of CrP_{4}
Reading from left to right, the columns contain the values $h, k, F_{\text {obs }}, F_{\text {cale }}$.

促

的

Jeitschko \& Parthé, 1969), using positional parameters of CrP_{4}, gave very good agreement between calculated and observed intensities (Table 1), confirming the CrP_{4}-type structure for MoP_{4}.

Conductivity measurements on a compact, multiplecrystal sample with the four-probe technique showed metallic conductivity ($\varrho_{298}{ }^{\circ}=2.0 \times 10^{-3}$ ohm.cm, $\left.\varrho_{4.2{ }^{\circ} \mathrm{K}}=1.2 \times 10^{-3} \mathrm{ohm} . \mathrm{cm}\right)$.

Discussion

Fig. 1 shows the densities of the new high-pressure phases, CrP_{4} and MoP_{4}, as compared with calculated densities of other Cr and Mo phosphides prepared under 'ambient' (in quartz capsules) pressure. It can be seen that the densities of CrP_{4} and MoP_{4} fit well into the function given by the ambient pressure phases in the systems Mo-P and Cr-P. The question arises whether CrP_{4} and MoP_{4} might not also be stable at pressures much lower than 65 kbar . Indeed, as mentioned in the experimental section, CrP_{4} could also be
prepared in sealed Pyrex tubes at $1000^{\circ} \mathrm{C}$ and 3 kbar . However, attempts to synthesize CrP_{4} or MoP_{4} from the elemental components in sealed, evacuated quartz capsules at $600^{\circ} \mathrm{C}$ resulted in multiple-phase products, whose X-ray patterns did not show the presence of CrP_{4} or MoP_{4}. Furthermore, single-phase CrP_{4} prepared under high pressure formed white phosphorus when annealed in an evacuated quartz capsule at $400^{\circ} \mathrm{C}$. Thus, while CrP_{4} might still be a stable modification at ambient pressure at temperatures lower than $400^{\circ} \mathrm{C}$, our results agree with those of Faller et al. (1941), who found CrP_{2} and MoP_{2} to be the compounds richest in \mathbf{P} at ambient pressure.
The structure of CrP_{4} is shown in Figs. 2 and 3. It can best be described as a three-dimensional framework structure, although it can be visualized as a layered structure with atoms at $z \simeq \frac{1}{4}$ and $\frac{3}{4}$. The Cr atom is surrounded by six P atoms, forming a distorted octahedron. These octahedra share edges and thus form zigzag chains in the z direction. The P atoms are in two nonequivalent sites. Both have four nearest

Table 4. Final positional and thermal parameters of the CrP_{4} structure
Numbers in parentheses are e.s.d.'s in the least significant digits.

	x	y	z	$B\left(\AA^{2}\right)$
Cr in 4(e)	0	$0.06241(3)$	$\frac{1}{4}$	$0.266(7)$
$\mathrm{P}(1)$ in $8(f)$	$0.27377(8)$	$0.08859(4)$	$0.6797(7)$	$0.367(8)$
$\mathrm{P}(2)$ in $8(f)$	$0.27388(7)$	$0.22115(4)$	$0.18996(7)$	$0.349(8)$

Fig. 2. Stereodiagram of the CrP_{4} structure.

Fig. 3. Normal projections of the CrP_{4} structure. In the projection on (001), atoms at $z \simeq \frac{3}{4}$ are connected by full lines and atoms $z \simeq \frac{1}{4}$ are connected by double lines.
neighbors in approximately tetrahedral configuration: $\mathrm{P}(1)$ has two P atoms and two Cr atoms as neighbors while $P(2)$ is surrounded by one Cr atom and three P atoms.

Interatomic distances and angles for CrP_{4} are given in Table 5. Fig. 4 shows nearest-neighbor environments. It can be seen that P-P distances vary within the limits $2 \cdot 21 \pm 0.02 \AA$. These distances are similar to the covalent bonding distances of about $2 \cdot 22 \AA$ found for Hittorf's phosphorus (Thurn \& Krebs, 1969) and the average P-P distance of $2.23 \AA$ found for the black phosphorus modification (Brown \& Rundqvist, 1965). In both these phosphorus modifications, the P atom is bound to three P neighbors at three corners of a distorted tetrahedron, while the fourth corner can be thought of as accommodating a nonbonding electron pair.

Table 5. Interatomic distances and angles in the CrP_{4} structure

Standard deviations were computed from e.s.d.'s of positional parameters and lattice constants; they are all less than $0.001 \AA$ and $0 \cdot 1^{\circ}$, respectively.

	$\begin{array}{ll} \mathrm{Cr}: & 2 \mathrm{P}(1) \\ & 2 \mathrm{P}(1) \\ & 2 \mathrm{P}(2) \\ & 2 \mathrm{Cr} \end{array}$	$\begin{aligned} & 2 \cdot 3925 \AA \\ & 2 \cdot 2912 \\ & 2 \cdot 3252 \\ & 3 \cdot 1828 \end{aligned}$		
$\mathrm{P}(1):$ 1 Cr 1 Cr $1 \mathrm{P}(1)$ $1 \mathrm{P}(2)$	$\begin{aligned} & 2 \cdot 3925 \AA \\ & 2.2912 \\ & 2 \cdot 1980 \\ & 2.2285 \end{aligned}$	$\mathrm{P}(2)$:	$: \begin{aligned} & 1 \mathrm{Cr} \\ & 1 \mathrm{P}(1) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \mathrm{P}(2) \\ & \end{aligned}$	$\begin{aligned} & 2 \cdot 3252 \AA \\ & 2 \cdot 2285 \\ & 2 \cdot 2011 \\ & 2 \cdot 2070 \end{aligned}$
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(1)$	$94.41^{\circ}(2 \times)$			85.59°
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(1)$	$166 \cdot 47$	$\mathrm{Cr}-\mathrm{P}(1)-\mathrm{P}(1)$		123.85
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(1)$	$95 \cdot 17$ ($2 \times$)	$\mathrm{Cr}-\mathrm{P}(1)-\mathrm{P}(2)$		111.35
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(2)$	84.00 ($2 \times$)	$\mathrm{Cr}-\mathrm{P}(1)-\mathrm{P}(1)$		$125 \cdot 44$
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(2)$	86.07 ($2 \times$)	$\mathrm{Cr}-\mathrm{P}(1)-\mathrm{P}(2)$		116.01
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(1)$	89.67	$\mathrm{P}(1)-\mathrm{P}(1)-\mathrm{P}(2)$		95.93
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(2)$	177.45 ($2 \times$)	$\mathrm{Cr}-\mathrm{P}(2)-\mathrm{P}(1)$		
$\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(2)$	92.46 ($2 \times$)			118.45°
$\mathrm{P}(2)-\mathrm{Cr}-\mathrm{P}(2)$	85.46	$\mathrm{Cr}-\mathrm{P}(2)-\mathrm{P}(2)$		119.62
$\mathrm{Cr}-\mathrm{Cr}-\mathrm{Cr}$	130.08	$\mathrm{Cr}-\mathrm{P}(2)-\mathrm{P}(2)$		$126 \cdot 40$
		$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(2)$		95.41
		$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(2)$		97.30
		$\mathrm{P}(2)-\mathrm{P}(2)-\mathrm{P}(2)$		$92 \cdot 67$

CrP_{4} and MoP_{4} have the highest phosphorus content of known transition metal phosphides. Among nontransition metal phosphides the compounds HgPbP_{14} (Krebs \& Ludwig, 1958) and CdP_{4} (Krebs, Müller \& Zürn, 1956) have been reported. In the HgPbP_{14} structure, most P atoms have a coordination similar to the coordination found in elemental P modifications, while the CdP_{4} structure is surprisingly closely related to the CrP_{4} structure. As in CrP_{4}, the Cd atom is octahedrally coordinated by P atoms, and the two nonequivalent P atoms have tetrahedral environments with three P plus one Cd and two P plus two Cd atoms respectively. The average P-P distance is again $2 \cdot 21 \AA$. However, in CdP_{4} the $\left[\mathrm{CdP}_{6}\right]$ octahedra are linked over corners in all three dimensions. This difference in the
linkage of octahedra can be understood through the presence of a positive partial charge on Cd, caused by the difference in electronegativity of Cd and P . Since the $\mathrm{Cd}-\mathrm{Cd}$ distances are larger for corner-sharing octahedra than for edge-sharing octahedra, corne1sharing is more stable from an electrostatic point of view. Conversely, edge-sharing in CrP_{4} can be taken as an indication of metal-metal bonding, especially since the composition would permit corner-sharing. Metalmetal bonding can also be inferred from the deviations from ideal tetrahedral and octahedral bond angles around the $\mathrm{Cr}-\mathrm{Cr}$ bond (Fig. 4): the ideally tetrahedral angle of 109° for $\mathrm{Cr}-\mathrm{P}(1)-\mathrm{Cr}$ is reduced to 86°, and the ideally octahedral angle of 90° for $\mathrm{P}(1)-\mathrm{Cr}-\mathrm{P}(1)$ is increased to 94°, to allow for shorter $\mathrm{Cr}-\mathrm{Cr}$ contacts. The $\mathrm{Cr}-\mathrm{Cr}$ distance of $3 \cdot 18 \AA$ is larger than that of about $2 \cdot 5 \AA$ in elemental Cr , but may still be considered as bonding.

Assigning a formal valence of zero to each P atom bonded to three P atoms and one Cr atom, and a formal valence of -1 to each P atom bonded to two P and two Cr atoms, the formal v 1 lence of Cr in CrP_{4} is +2 resulting in a d^{4} configuration. Alternatively, one arrives at the same result by accounting for 22 out of the total of 26 valence electrons per formula unit CrP_{4}, through filling the interacting four $s p^{3}$ orbitals (on P) and one $d^{2} s p^{3}$ orbital (on Cr). The remaining four valence electrons can be accommodated in the $t_{2 g}$ orbitals of Cr . One of these orbitals - extending in directions perpendicular to the neighboring Cr atoms can be filled with two spin-compensating electrons. The other two electrons can be accommodated in the remaining two equivalent $t_{2 g}$ orbitals, where they can overlap with the corresponding orbitals of the neighboring Cr atoms, thus accounting for the diamagnetic (or Pauli paramagnetic) behavior. The $\mathrm{Cr}-\mathrm{Cr}-\mathrm{Cr}$ angle of 130° compares favorably with the ideal angle of 120° for these assignments.
In this context, the homologous series $T X_{2}(T=$ $\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} ; X=\mathrm{P}, \mathrm{Sb}, \mathrm{As}$) with marcasite structure (Hulliger, 1963) is of interest. In these compounds, the metalloid elements can be considered as forming X_{2}^{4-} pairs; therefore, the VIII a metals have formal valence +4 , resulting again in a d^{4} configuration, and the compounds are essentically diamagnetic (Hulliger \& Mooser, 1965a). The VIII a metal is again surrounded by six metalloid atoms in octahedral coordination, and these octahedra share edges. However, these edgeshared octahedra form straight strings in the marca-site-type structure, whereas zigzag chains are formed in the CrP_{4} structure. As mentioned above, the zigzag linkage of edge-sharing octahedra is ideal for maximal overlap of two $t_{2 g}$ orbitals of the central atoms. The linear linkage of edge-sharing octahedra in marcasites allows maximal overlap for only one $t_{2 g}$ orbital. Hulliger \& Mooser (1965b) have cautiously denied the presence of metal-metal bonds in d^{4} marcasites, while Goodenough (1965) allows for σ and π metal-metal bonding.

Our interpretation of bonding in CrP_{4} does not necessarily indicate metallic conductivity. We believe that CrP_{4} is essentially a semimetal.

Thanks are due to C. G. Frederick and J. L. Gillson for magnetic and conductivity measurements. The authors acknowledge helpful discussions with Drs D. B. Rogers, H. S. Jarrett, L. J. Guggenberger, and R. V. Kasowski. Thanks are also due to W. H. O'Connor and D. M. Graham for their competent help in preparing samples and drawing figures.

References

Bachmayer, K., Nowotny, H. \& Kohl, A. (1955). Mh. Chem. 86, 39.
Baurecht, H. E., Boller, H. \& Nowotny, H. (1971). Mh. Chem. 102, 373.
Bither, T. A., Gillson, J. L. \& Young, H. S. (1966). Inorg. Chem. 5, 1559.
Brown, A. \& Rundqvist, S. (1965). Acta Cryst. 19, 684.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A 24, 390.
Faller, E. F., Biltz, W., Meisel, K. \& Zumbusch, M. (1941). Z. anorg. allgem. Chem. 248, 209.

Finger, L. W. (1969). Unpublished computer program for the least-squares refinement of crystal structures.
Fritchie, C. J. \& Guggenberger, L. J. (1967). Unpublished electron density summation program.
Goodenough, J. B. (1965). In The Molecular Design of Materials and Devices. Ed. A. R. von Hippel. Cambridge (Mass.): MIT Press.
Hulliger, F. (1963). Nature, Lond. 198, 1081.
Hulliger, F. \& Mooser, E. (1965a). J. Phys. Chem. Solids, 26, 429.
Hulliger, E. \& Mooser, E. (1965b). In Progress in Solid State Chemistry. Vol. 2, pp. 330-337. Ed. H. Reiss. New York: Pergamon Press.
Krebs, H. \& Ludwig, T. (1958). Z. anorg. allgem. Chem. 294, 257.
Krebs, H., Müller, K.-H. \& Zürn, G. (1956). Z. anorg. allgem..Chem. 285, 15.
Lloyd, E. C., Hutton, U. O. \& Johnson, D. P. (1959). J. Res. Nat. Bur. Stand. C63, 59.

Lundström, T. (1962). Acta Chem. Scand. 16, 149.
Lundström, T. (1969). Arkiv Kemi, 31, (19), 227.

Fig. 4. Nearest-neighbor environments in the CrP_{4} structure.
Nowotny, H. \& Henglein, E. (1938). Z. anorg. allgem. Chem. 239, 14.
RUNDQVIST, S. (1962a). Acta Chem. Scand. 16, 1.
Rundqvist, S. (1962b). Acta Chem. Scand. 16, 287.
RundQvist, S. (1962c). Ark. Kemi, 20, (7), 67.
Rundqvist, S. (1965). Acta Chem. Scand. 19, 393.
RundQvist, S. \& Lundström, T. (1963). Acta Chem. Scand. 17, 37.
Schönberg, N. (1954). Acta Chem. Scand. 8, 226.
Sellberg, B. \& Rundqvist, S. (1965). Acta Chem. Scand. 19, 760.
Thurn, H. \& Krebs, H. (1969). Acta Cryst. B25, 125.
Vogel, R. \& Kasten, G. W. (1939). Arch. Eisenhüttenw. 12, 387.
Yvon, K., Jeitschko, W., Parthe, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Report of the Laboratory for Research on the Structure of Matter, Univ. of Pennsylvania, Philadelphia, Pa.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.
Årstad, O. \& Nowotny, H. (1937). Z. phys. Chem. B38, 356.

[^0]: * Contribution No. 1847.

